Compare commits
3 Commits
6eb450ddbe
...
a680f4bbd9
| Author | SHA1 | Date | |
|---|---|---|---|
| a680f4bbd9 | |||
| 4113d9885b | |||
| 9ddeaaf907 |
@ -1,6 +1,9 @@
|
|||||||
import sympy as sp
|
import sympy as sp
|
||||||
import time
|
import time
|
||||||
import random
|
import random
|
||||||
|
import readline
|
||||||
|
|
||||||
|
errs = (ValueError, TypeError)
|
||||||
|
|
||||||
def genmatrix(rowcol, intmax, dif) :
|
def genmatrix(rowcol, intmax, dif) :
|
||||||
# generate a random matrices
|
# generate a random matrices
|
||||||
@ -20,7 +23,11 @@ def inmat(rowcol) :
|
|||||||
mat[i]=input().split(" ")
|
mat[i]=input().split(" ")
|
||||||
for j in range(len(mat[i])) :
|
for j in range(len(mat[i])) :
|
||||||
# convert list using nsimplify in order to take rational number symbolically
|
# convert list using nsimplify in order to take rational number symbolically
|
||||||
mat[i][j] = sp.nsimplify(mat[i][j])
|
try :
|
||||||
|
mat[i][j] = sp.nsimplify(mat[i][j])
|
||||||
|
except errs : return False
|
||||||
|
try : mat = sp.Matrix(mat)
|
||||||
|
except errs : return False
|
||||||
return mat
|
return mat
|
||||||
|
|
||||||
# multcheck function to check if two matrices are multiplied together
|
# multcheck function to check if two matrices are multiplied together
|
||||||
@ -28,41 +35,41 @@ def multcheck(a, b, rowcol, intmax) :
|
|||||||
sp.pprint(b)
|
sp.pprint(b)
|
||||||
print("Multiply these two matrices together")
|
print("Multiply these two matrices together")
|
||||||
# return bool based on if input equals the two matrices multiplied together
|
# return bool based on if input equals the two matrices multiplied together
|
||||||
return (sp.Matrix(inmat(rowcol)) == a*b)
|
return (inmat(rowcol) == a*b)
|
||||||
|
|
||||||
# detcheck function to check if the determinant of the matrix is correct
|
# detcheck function to check if the determinant of the matrix is correct
|
||||||
def detcheck(a, b, rowcol, intmax):
|
def detcheck(a, b, rowcol, intmax):
|
||||||
det = sp.det(a)
|
det = sp.det(a)
|
||||||
# return bool based on if input equals determinant
|
# return bool based on if input equals determinant
|
||||||
return (det == sp.nsimplify(input("What is the determinant of this matrix?: ")))
|
try : d = sp.nsimplify(input("What is the determinant of this matrix?: "))
|
||||||
|
except errs : return False
|
||||||
|
return (det == d)
|
||||||
|
|
||||||
# invcheck function to check if the inverse of the matrix is correct
|
# invcheck function to check if the inverse of the matrix is correct
|
||||||
def invcheck(a, b, rowcol, intmax):
|
def invcheck(a, b, rowcol, intmax):
|
||||||
det = a.det()
|
# return bool based on if input equals inverse of matrix
|
||||||
if det != 0 :
|
print("What is the inverse of this matrix?")
|
||||||
# return bool based on if input equals inverse of matrix
|
return (inmat(rowcol) == a.inv())
|
||||||
print("What is the inverse of this matrix?")
|
|
||||||
return (sp.Matrix(inmat(rowcol)) == a.inv())
|
|
||||||
|
|
||||||
# eigcheck function to check if the eigenvalues are correct
|
# eigcheck function to check if the eigenvalues are correct
|
||||||
def eigcheck(a, b, rowcol, intmax):
|
def eigcheck(a, b, rowcol, intmax):
|
||||||
eigs = a.eigenvals()
|
eigs = a.eigenvals()
|
||||||
for i in range(len(eigs)) :
|
for i in range(len(eigs)) :
|
||||||
val = sp.nsimplify(input("Input eigenvalue: "))
|
try :
|
||||||
if not (val in eigs and eigs[val] == sp.nsimplify(input("Input its algebraic multiplicity: "))) :
|
val = sp.nsimplify(input("Input eigenvalue: "))
|
||||||
|
algm = sp.nsimplify(input("Input its algebraic multiplicity: "))
|
||||||
|
except errs : return False
|
||||||
|
if not (val in eigs and eigs[val] == algm) :
|
||||||
# return false if the eigenvalue not in dictionary and wrong alg multiplicity
|
# return false if the eigenvalue not in dictionary and wrong alg multiplicity
|
||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def diagcheck(a, b, rowcol, intmax):
|
def diagcheck(a, b, rowcol, intmax):
|
||||||
return (a.diagonalize()[1] == sp.Matrix(inmat(rowcol)))
|
return (a.diagonalize()[1] == inmat(rowcol))
|
||||||
|
|
||||||
# practice function
|
# practice function
|
||||||
def practice(t) :
|
def practice(t) :
|
||||||
count = 0
|
count = 0
|
||||||
rowcol = int(input("What size of matrix do you want to practice with? "))
|
|
||||||
intmax = int(input("What maximum size of integer do you want the matrix to be made out of? "))
|
|
||||||
dif = float(input("What difficulty (probability for a matrix of rational values between 0, 1) do you want? "))
|
|
||||||
|
|
||||||
# choose the function of the program that you want
|
# choose the function of the program that you want
|
||||||
if t == "mult" :
|
if t == "mult" :
|
||||||
@ -78,6 +85,15 @@ def practice(t) :
|
|||||||
else :
|
else :
|
||||||
exit()
|
exit()
|
||||||
|
|
||||||
|
while True :
|
||||||
|
try :
|
||||||
|
rowcol = abs(int(input("What size of matrix do you want to practice with? ")))
|
||||||
|
intmax = abs(int(input("What maximum size of integer do you want the matrix to be made out of? ")))
|
||||||
|
dif = float(input("What difficulty (probability for a matrix of rational values between 0, 1) do you want? "))
|
||||||
|
break
|
||||||
|
except errs:
|
||||||
|
continue
|
||||||
|
|
||||||
# initialise time measurement
|
# initialise time measurement
|
||||||
tic = time.perf_counter()
|
tic = time.perf_counter()
|
||||||
|
|
||||||
@ -92,6 +108,9 @@ def practice(t) :
|
|||||||
if t == "diag" :
|
if t == "diag" :
|
||||||
while not a.is_diagonalizable :
|
while not a.is_diagonalizable :
|
||||||
a = genmatrix(rowcol, intmax, dif)
|
a = genmatrix(rowcol, intmax, dif)
|
||||||
|
if t == "inv" :
|
||||||
|
while a.det() == 0 :
|
||||||
|
a = genmatrix(rowcol, intmax, dif)
|
||||||
sp.pprint(a)
|
sp.pprint(a)
|
||||||
# if return of function is True
|
# if return of function is True
|
||||||
if f(a, b, rowcol, intmax) :
|
if f(a, b, rowcol, intmax) :
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user