Compare commits
11 Commits
7ab770e3f6
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
| 32a8bd9dc6 | |||
| 9075fc3c8d | |||
| 75514a194f | |||
| efcc4abf0a | |||
| 70851add1d | |||
| a680f4bbd9 | |||
| 4113d9885b | |||
| 9ddeaaf907 | |||
| 6eb450ddbe | |||
| 5b7c29a262 | |||
| a70b6fd0b7 |
21
README.md
21
README.md
@ -1,2 +1,23 @@
|
||||
# LinAlg-Practice
|
||||
TUI program to practice linear algebra computations (multiplications, determinants, inverses, eigenvalues, etc). Written in python by leveraging the sympy library.
|
||||
|
||||
## Usage
|
||||
To use: run the program with your favourite python interpreter
|
||||
```sh
|
||||
python linalg-practice.py
|
||||
```
|
||||
|
||||
You will be prompted for selecting which settings you want to use
|
||||
|
||||
## Features
|
||||
* Multiplication of two matrices
|
||||
* Determinant computation
|
||||
* Inverse computation
|
||||
* Eigenvalue computation
|
||||
* Finding diagonalisations
|
||||
* Finding triangularisations
|
||||
|
||||
## Planned:
|
||||
* Linear systems
|
||||
* Row-echelon form
|
||||
* GUI??
|
||||
|
||||
@ -1,6 +1,18 @@
|
||||
import sympy as sp
|
||||
import time
|
||||
import datetime
|
||||
import random
|
||||
import readline
|
||||
|
||||
errs = (ValueError, TypeError)
|
||||
|
||||
def genmatrix(rowcol, intmax, dif) :
|
||||
# generate a random matrices
|
||||
a = sp.randMatrix(rowcol, rowcol, -intmax, intmax)
|
||||
# if determinant non-zero, radnom value less than difficulty, set a to its inverse
|
||||
if a.det() != 0 and random.random() <= dif :
|
||||
a = a.inv()
|
||||
return a
|
||||
|
||||
# in function to take arbitrary matrix input from user
|
||||
def inmat(rowcol) :
|
||||
@ -12,7 +24,11 @@ def inmat(rowcol) :
|
||||
mat[i]=input().split(" ")
|
||||
for j in range(len(mat[i])) :
|
||||
# convert list using nsimplify in order to take rational number symbolically
|
||||
mat[i][j] = sp.nsimplify(mat[i][j])
|
||||
try :
|
||||
mat[i][j] = sp.nsimplify(mat[i][j])
|
||||
except errs : return False
|
||||
try : mat = sp.Matrix(mat)
|
||||
except errs : return False
|
||||
return mat
|
||||
|
||||
# multcheck function to check if two matrices are multiplied together
|
||||
@ -20,38 +36,66 @@ def multcheck(a, b, rowcol, intmax) :
|
||||
sp.pprint(b)
|
||||
print("Multiply these two matrices together")
|
||||
# return bool based on if input equals the two matrices multiplied together
|
||||
return (sp.Matrix(inmat(rowcol)) == a*b)
|
||||
return (inmat(rowcol) == a*b)
|
||||
|
||||
# detcheck function to check if the determinant of the matrix is correct
|
||||
def detcheck(a, b, rowcol, intmax):
|
||||
det = sp.det(a)
|
||||
# return bool based on if input equals determinant
|
||||
return (det == sp.nsimplify(input("What is the determinant of this matrix?: ")))
|
||||
try : d = sp.nsimplify(input("What is the determinant of this matrix?: "))
|
||||
except errs : return False
|
||||
return (det == d)
|
||||
|
||||
# invcheck function to check if the inverse of the matrix is correct
|
||||
def invcheck(a, b, rowcol, intmax):
|
||||
det = a.det()
|
||||
if det != 0 :
|
||||
# return bool based on if input equals inverse of matrix
|
||||
print("What is the inverse of this matrix?")
|
||||
return (sp.Matrix(inmat(rowcol)) == a.inv())
|
||||
# return bool based on if input equals inverse of matrix
|
||||
print("What is the inverse of this matrix?")
|
||||
return (inmat(rowcol) == a.inv())
|
||||
|
||||
# eigcheck function to check if the eigenvalues are correct
|
||||
def eigcheck(a, b, rowcol, intmax):
|
||||
eigs = a.eigenvals()
|
||||
for i in range(len(eigs)) :
|
||||
val = sp.nsimplify(input("Input eigenvalue: "))
|
||||
if not (val in eigs and eigs[val] == sp.nsimplify(input("Input its algebraic multiplicity: "))) :
|
||||
try :
|
||||
val = sp.nsimplify(input("Input eigenvalue: "))
|
||||
algm = sp.nsimplify(input("Input its algebraic multiplicity: "))
|
||||
except errs : return False
|
||||
if not (val in eigs and eigs[val] == algm) :
|
||||
# return false if the eigenvalue not in dictionary and wrong alg multiplicity
|
||||
return False
|
||||
return True
|
||||
|
||||
def diagcheck(a, b, rowcol, intmax):
|
||||
return (a.diagonalize()[1] == inmat(rowcol))
|
||||
|
||||
# pascalmat function to generate pascal matrices (used for generating unimodular matrices)
|
||||
def pascalmat(n) :
|
||||
mat = []
|
||||
# generate rows of binomial coefficients
|
||||
for i in range(n) :
|
||||
mat.append(sp.binomial_coefficients_list(i) + [0]*(n-1-i))
|
||||
mat = sp.Matrix(mat)
|
||||
# make a lower triangular pascal matrix
|
||||
lmat = mat.transpose()
|
||||
rand = random.random()
|
||||
# randomly pick either lower or upper triangular pascal matrix
|
||||
if rand <= 1/2 :
|
||||
mat = lmat
|
||||
return mat
|
||||
|
||||
def triangcheck(a, b, rowcol, intmax) :
|
||||
print("Input triangularised matrix,")
|
||||
T = inmat(rowcol)
|
||||
print("Input basis change matrix (from standard basis)")
|
||||
P_inv = inmat(rowcol)
|
||||
# check if P_inv is invertible
|
||||
if P_inv.det() == 0 : return False
|
||||
# return false if T is not upper triangular and not similar to the original matrix
|
||||
return (T.is_upper and a == P_inv.inv()*T*P_inv)
|
||||
|
||||
# practice function
|
||||
def practice(t) :
|
||||
count = 0
|
||||
rowcol = int(input("What size of matrix do you want to practice with? "))
|
||||
intmax = int(input("What maximum size of integer do you want the matrix to be made out of? "))
|
||||
dif = float(input("What difficulty (probability for a matrix of rational values between 0, 1) do you want? "))
|
||||
|
||||
# choose the function of the program that you want
|
||||
if t == "mult" :
|
||||
@ -62,24 +106,56 @@ def practice(t) :
|
||||
f = invcheck
|
||||
elif t == "eig" :
|
||||
f = eigcheck
|
||||
elif t == "diag" :
|
||||
f = diagcheck
|
||||
elif t == "triang" :
|
||||
f = triangcheck
|
||||
else :
|
||||
exit()
|
||||
|
||||
while True :
|
||||
try :
|
||||
rowcol = abs(int(input("What size of matrix do you want to practice with? ")))
|
||||
intmax = abs(int(input("What maximum size of integer do you want the matrix to be made out of? ")))
|
||||
dif = float(input("What difficulty (probability for a matrix of rational values between 0, 1) do you want? "))
|
||||
break
|
||||
except errs:
|
||||
continue
|
||||
|
||||
# initialise time measurement
|
||||
tic = time.perf_counter()
|
||||
|
||||
# infinite loop of practice
|
||||
while True :
|
||||
# generate a random matrices
|
||||
a = sp.randMatrix(rowcol, rowcol, 0, intmax)
|
||||
b = sp.randMatrix(rowcol, rowcol, 0, intmax)
|
||||
|
||||
# if determinant non-zero, radnom value less than difficulty, set a to its inverse
|
||||
if a.det() != 0 and random.random() <= dif :
|
||||
a = a.inv()
|
||||
a = genmatrix(rowcol, intmax, dif)
|
||||
b = genmatrix(rowcol, intmax, dif)
|
||||
if t == "triang" :
|
||||
while True :
|
||||
# generate matrices with smaller integers
|
||||
a = genmatrix(rowcol, intmax//rowcol, dif)
|
||||
# ensure a is invertible
|
||||
if a.det() == 0 : continue
|
||||
# find a non-fractional upper trianagular matrix (ensures triangularisability)
|
||||
c = a.LUdecompositionFF()[3]
|
||||
croots = {k: k for k in sp.roots(c.charpoly()) if k not in sp.roots(c.charpoly(), filter='Z')}
|
||||
# make sure only integer roots and c is not diagonalisable
|
||||
if not (len(croots) != 0 or c.is_diagonalizable()) :
|
||||
a = c
|
||||
pmat = pascalmat(rowcol)
|
||||
# multiply by a pascal matrix to get a similar matrix with nice numbers
|
||||
a = pmat.inv()*a*pmat
|
||||
if a.is_upper: continue
|
||||
break
|
||||
|
||||
# infinite loop until user succeeds
|
||||
while True :
|
||||
# if diagcheck, make sure the matrix is diagonalizable
|
||||
if t == "diag" :
|
||||
while not a.is_diagonalizable :
|
||||
a = genmatrix(rowcol, intmax, dif)
|
||||
if t == "inv" :
|
||||
while a.det() == 0 :
|
||||
a = genmatrix(rowcol, intmax, dif)
|
||||
sp.pprint(a)
|
||||
# if return of function is True
|
||||
if f(a, b, rowcol, intmax) :
|
||||
@ -89,7 +165,7 @@ def practice(t) :
|
||||
# increment count
|
||||
count += 1
|
||||
# print success message
|
||||
print("Correct! You have solved", count, "problems in %.2f seconds" %tictoc)
|
||||
print("Correct! You have solved", count, "problems in", str(datetime.timedelta(seconds=round(tictoc))))
|
||||
break
|
||||
else :
|
||||
# print failure message
|
||||
@ -97,5 +173,5 @@ def practice(t) :
|
||||
continue
|
||||
|
||||
# take input from user on the type of practice they want to do
|
||||
t = input("What do you want to practice? (mult, det, inv, eig) ")
|
||||
t = input("What do you want to practice? (mult, det, inv, eig, diag, triang) ")
|
||||
practice(t)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user